标签: 2020版高中数学第三章概率学案(含解析)新人教B版必修3  
文档信息
上传用户 小北哇     
文档格式 doc
文档价格 1.8 元
文档大小 262K
文档页数 11 页
相关文档推荐
doc 2020版高中数学 第三章 空间向量与立体几何 3.1.2 空间向量的基本定理学案(含解析)新人教B版选修2-1.docx
doc 2019-2020学年高二政治下学期月考试题.doc
doc 2019-2020学年高二政治下学期期中联合考试试题.doc
doc 2020高考政治大一轮复习 第三单元 收入与分配 第7课 个人收入的分配课时跟踪练.doc
doc 2020高考政治大一轮复习 第九单元 文化与生活 第21课 文化与社会课时跟踪练.doc
doc 2020版高中数学 第三章 空间向量与立体几何 3.2.1 直线的方向向量与直线的向量方程学案(含解析)新人教B版选修2-1.docx
doc 2020高考政治大一轮复习 第二单元 生产、劳动与经营 第4课 生产与经济制度课时跟踪练.doc
doc 2019-2020学年高二政治下学期期中试题 (I).doc
doc 2019-2020学年高二政治下学期期中试题 (IV).doc
doc 2020版高中数学 第三章 空间向量与立体几何 专题突破三 空间直角坐标系的构建策略学案(含解析)新人教B版选修2-1.docx
doc 2020高考政治大一轮复习 第二单元 生产、劳动与经营单元检测.doc
doc 2020版高中数学 第二章 圆锥曲线与方程 1.2 椭圆的简单性质(第2课时)椭圆简单性质的应用学案(含解析)北师大版选修1 -1.docx
doc 2019-2020学年高二政治下学期期中试题 (VII).doc
doc 2020高考政治大一轮复习 第五单元 公民的政治生活单元检测.doc
doc 2019-2020学年高二政治下学期期中试题 文 (II).doc
doc 2020高考政治大一轮复习 第八单元 当代国际社会单元检测.doc
doc 2019-2020学年高二政治下学期期中试题 文.doc
doc 2020版高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程学案(含解析)新人教B版选修1 -1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.1.2 由曲线求它的方程、由方程研究曲线的性质学案(含解析)新人教B版选修2-1.docx
doc 2020高考政治大一轮复习 第六单元 为人民服务的政府单元检测.doc
doc 2020高考政治大一轮复习 第十一单元 中华文化与民族创新单元检测.doc
doc 2019-2020学年高二政治下学期期中试题 理 (IV).doc
doc 2019-2020学年高二政治下学期期中试题.doc
doc 2020高考政治大一轮复习 第十三单元 探索世界与追求真理 第33课 把握思维的奥妙课时跟踪练.doc
doc 2020高考政治大一轮复习 第十二单元 发展中国特色社会主义文化 第28课 走进文化生活课时跟踪练.doc
doc 2020版高中数学 第二章 圆锥曲线与方程 2.2.1 双曲线及其标准方程学案(含解析)新人教B版选修1 -1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.2.2 椭圆的几何性质(第1课时)椭圆的几何性质学案(含解析)新人教B版选修2-1.docx
doc 2019-2020学年高二政治下学期期中试题文 (I).doc
doc 2019-2020学年高二政治下学期期中试题文 (IV).doc
doc 2020高考政治大一轮复习 第十二单元 发展中国特色社会主义文化单元检测.doc
doc 2019-2020学年高二政治下学期期中试题理.doc
doc 2020高考政治大一轮复习 第十单元 文化传承与创新 第23课 文化的多样性与文化传播课时跟踪练.doc
doc 2020高考政治大一轮复习 第十单元 文化传承与创新 第25课 文化创新课时跟踪练.doc
doc 2020版高中数学 第二章 圆锥曲线与方程 2.2.2 椭圆的几何性质(第4课时)直线与椭圆的位置关系(三)学案(含解析)新人教B版选修2-1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.3.2 双曲线的几何性质学案(含解析)新人教B版选修2-1.docx
doc 2019-2020学年高二政治下学期期中试题(含解析) (IV).doc
doc 2019-2020学年高二政治下学期期中试题(无答案) (II).doc
doc 2020高考政治大一轮复习 第十四单元 思想方法与创新意识 第36课 唯物辩证法的发展观时跟踪练.doc
doc 2020高考政治大一轮复习 第十四单元 思想方法与创新意识单元检测.doc
doc 2020高考政治大一轮复习 第四单元 发展社会主义市场经济 第9课 走进社会主义市场经济课时跟踪练.doc
doc 2020版高中数学 第二章 圆锥曲线与方程 2.4.1 抛物线的标准方程学案(含解析)新人教B版选修2-1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 3.1 双曲线及其标准方程学案(含解析)北师大版选修1 -1.docx
doc 2019-2020学年高二政治下学期期初学业水平测试模拟试题.doc
doc 2019-2020学年高二政治下学期期初考试试题.doc
doc 2020高考政治精刷单元测试卷(一)生活与消费.docx
doc 2020高考数学刷题首秧单元测试七平面解析几何文含解析.doc
doc 2020版高中数学 第二章 圆锥曲线与方程 专题突破三 离心率的求法学案(含解析)北师大版选修1 -1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 专题突破四 圆锥曲线的定点、定值与最值问题学案(含解析)北师大版选修1 -1.docx
doc 2019-2020学年高二政治下学期期末模拟试题 (I).doc
doc 2019-2020学年高二政治下学期期末考试试题 (I).doc
doc 2019-2020学年高二政治下学期期末考试试题 (V).doc
doc 2020高考数学刷题首秧单元质量测试一集合与常用逻辑用语理含解析.docx
doc 2020高考数学刷题首秧第七章平面解析几何考点测试50两条直线的位置关系与距离公式理含解析.docx
doc 2020高考数学刷题首秧第八章概率与统计考点测试53几何概型文含解析.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 阶段训练三(含解析)北师大版选修1 -1.docx
doc 2020高考政治大一轮复习 第一单元 生活与消费 第3课 多彩的消费课时跟踪练.doc
doc 2020高考化学刷题综合练(二)必修二模块综合检测(含解析).doc
doc 2020版高中数学 第三章 概率 3.1.4 概率的加法公式学案(含解析)新人教B版必修3.docx
doc 2019-2020学年高二政治下学期开学考试试题 (IV).doc
doc 2019-2020学年高二政治下学期开学考试试题 (I).doc
doc 2020高考化学刷题押题卷(一)押题创新卷(含解析).doc
doc 2020版高中数学 第三章 导数及其应用章末复习学案(含解析)新人教B版选修1 -1.docx
doc 2020版高中数学 第三章 导数及其应用 3.3.3 导数的实际应用学案(含解析)新人教B版选修1 -1.docx
doc 2020高考化学一轮复习 高考作业十五 原子结构(含解析).docx
doc 2020版高考语文一轮复习 课时作业7(含解析).doc
doc 2019-2020学年高二政治下学期学考模拟考试试题.doc
doc 2019-2020学年高二政治下学期学业水平期中试题.doc
doc 2019-2020学年高二政治下学期半期考试试题.doc
doc 2020版高中数学 第三章 导数及其应用 3.2.1 常数与幂函数的导数 3.2.2 导数公式表学案(含解析)新人教B版选修1 -1.docx
doc 2020版高中数学 第三章 导数及其应用 3.1.1 函数的平均变化率学案(含解析)新人教B版选修1 -1.docx
doc 2020版高考语文一轮复习 课时作业3(含解析).doc
doc 2020版高考语文一轮复习 课时作业28(含解析).doc
doc 2019-2020学年高二政治下学期入学摸底考试试题.doc
doc 2019-2020学年高二政治下学期6月月考试题.doc
doc 2020版高中数学 第三章 变化率与导数 专题突破五 利用导数求切线方程学案(含解析)北师大版选修1 -1.docx
doc 2020版高中数学 第三章 变化率与导数 2 导数的概念及其几何意义学案(含解析)北师大版选修1 -1.docx
doc 2020版高考语文一轮复习 课时作业25(含解析).doc
doc 2020版高考语文一轮复习 课时作业22(含解析).doc
doc 2020版高考语文一轮复习 课时作业1(含解析).doc
doc 2019-2020学年高二政治下学期5月月考试题 (II).doc
doc 2019-2020学年高二政治下学期4月月考试题.doc
doc 2020版高中数学 第三章 不等式 阶段训练四(含解析)新人教B版必修5.docx
doc 2020版高中数学 第三章 不等式 3.5.1 二元一次不等式(组)所表示的平面区域学案(含解析)新人教B版必修5.docx
doc 2020版高中数学 第三章 不等式 3.3 一元二次不等式及其解法(第1课时)一元二次不等式及其解法(一)学案(含解析)新人教B版必修5.docx
doc 2020版高考语文一轮复习 课时作业16(含解析).doc
doc 2019-2020学年高二政治下学期3月月考试题.doc
doc 2019-2020学年高二政治下学期3月月考试题 (II).doc
doc 2019-2020学年高二政治下学期2月月考试题.doc
doc 2020版高中数学 第三章 不等式 3.1.2 不等式的性质学案(含解析)新人教B版必修5.docx
doc 2020版高中数学 第一章 解三角形 阶段训练一(含解析)新人教B版必修5.docx
doc 2020版高中数学 第一章 解三角形 1.2 应用举例(第1课时)高度、距离问题学案(含解析)新人教B版必修5.docx
doc 2020版高考语文一轮复习 课时作业13(含解析).doc
doc 2020版高考语文一轮复习 课时作业12.1(含解析).doc
doc 2019-2020学年高二政治上学期第四次月考试题.doc
doc 2020版高中数学 第一章 解三角形 1.1.1 正弦定理学案(含解析)新人教B版必修5.docx
doc 2020版高中数学 第一章 算法初步 1.2.3 循环语句学案(含解析)新人教B版必修3.docx
doc 2020版高考语文一轮复习 练出高分8 语用+默写+文化常识+诗歌思想(含解析).doc
doc 2020版高考语文一轮复习 练出高分5 语用+默写+文化常识+诗歌技巧(含解析).doc
doc 2020版高考语文一轮复习 练出高分31 语用+默写+文化常识+诗歌技巧(含解析).doc
doc 2019-2020学年高二政治上学期第十次双周考试题.doc
doc 2019-2020学年高二政治上学期第十二次双周考试题.doc
doc 2020版高中数学 第一章 算法初步 1.1.2 程序框图 1.1.3 算法的三种基本逻辑结构和框图表示(一)学案(含解析)新人教B版必修3.docx
doc 2020版高中数学 第一章 常用逻辑用语章末复习学案(含解析)新人教B版选修1 -1.docx
doc 2020版高考语文一轮复习 练出高分29 语用+默写+文化常识+诗歌技巧(含解析).doc
doc 2020版高考语文一轮复习 练出高分26 语用+默写+诗歌比较+断句+翻译(含解析).doc
doc 2020版高考语文一轮复习 练出高分23 语用+默写+诗歌比较+翻译+图文转换(含解析).doc
doc 2019-2020学年高二政治上学期第六次双周考试题.doc
doc 2019-2020学年高二政治上学期第八次双周考试题 (I).doc
doc 2020版高中数学 第一章 常用逻辑用语 微专题突破一 判断充分、必要条件四策略学案(含解析)新人教B版选修1 -1.docx
doc 2020版高中数学 第一章 常用逻辑用语 3.3 全称命题与特称命题的否定学案(含解析)北师大版选修1 -1.docx
文档内容摘要
doc 第三章 概率 1 辨析频率与概率 概率与频率虽只有一字之差,但意义大不相同,同时二者之间又有一定的联系.下面和同学们一起认识一下这对“孪生兄弟”. 一、频率与概率的区别 频率反映了一个随机事件出现的频繁程度,它的值等于随机事件发生的次数与试验总次数的比.频率是随机的,在试验前不能确定,做同样次数的重复试验得到的某事件发生的频率不一定相同.而概率是一个确定的值,是客观存在的,与每次试验无关,与试验次数也无关. 例1连续抛掷一枚硬币10次,落地后正面向上出现了6次,设“抛一次硬币,正面向上”为事件A,则下列说法正确的有________. ①P(A)=;②P(A)≈; ③再连续抛掷该硬币10次,落地后出现正面的次数还是6; ④事件A发生的频率为; ⑤无论哪一次抛,硬币落地后正面向上的概率相同. 解析 ④⑤正确.在一次试验中,事件A发生的概率为,再连续抛掷该硬币10次,落地后出现正面的次数不确定. 答案 ④⑤ 点评 频率的随机性和概率的确定性是二者的本质区别. 二、频率与概率的联系 1.在大量重复进行同一试验时,频率总是在某个常数附近摆动.由于事件的随机性,有时候频率也可能出现偏离该“常数”较大的情形,但随着试验次数的增加,这种情形出现的可能性会减小.概率是频率的稳定值,可看作是频率在 理论上的平均值,它从数量上反映了随机事件发生的可能性的大小. 2.在实际问题中,某些随机事件的概率往往难以确切的得到,因此我们常常通过大量的重复试验,用随机事件发生的频率来估计概率. 例2一个不透明的袋中装有大小质地相同的红、白两种颜色的小球,某学习小组做摸球试验,每次从袋中摸出一个球,记下颜色后放回,搅匀后再摸.试验的部分数据如下表: 摸球次数 30 60 90 120 150 180 210 270 300 摸到红球的次数 6 25 31 38 45 53 67 摸到红球的频率 0.300 0.247 (1)将表格补充完整;(所求频率保留3位小数) (2)估计从中随机摸一个球,求摸到红球的概率P.(保留2位小数) 解 (1)第二行依次填:18,74. 第三行依次填:0.200,0.278,0.258,0.253,0.250,0.252,0.248. (2)由(1)知,虽然抽取次数不同,所得频率值不同,但随试验次数的增加,频率在常数0.250附近摆动,故P≈0.25. 点评 只有当频率值在某一常数附近摆动时,才能将此常数近似看作该事件发生的概率.现实生活中很多事件的概率是难以确切得到的,鉴于随机事件的发生带有随机性的同时又存在一定的规律性,故一般通过大量的重复试验,用随机事件的频率来估计概率. 2 概率加法公式应用点拨 概率的加法公式是计算概率的一个最基本的公式,根据它可以计算一些复杂事件的概率.概率的加法公式可推广为若事件A1,A2,…,An彼此互斥(两两互斥),则P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An),即彼此互斥事件和的概率等于各个事件发生的概率之和.用此公式时,同学们首先要判断事件是否互斥,如果事件不互斥,就不能用此公式.下面举例说明概率加法公式的应用. 一、计算互斥事件和的概率 例1由经验得知,某市某大型超市付款处排队等候付款的人数及其概率如下表: 排队人数 0 1 2 3 4 5人以上 概率 0.10 0.16 0.30 0.3 0.10 0.04 求:(1)至多2人排队的概率; (2)至少2人排队的概率. 解 (1)记“没有人排队”为事件A,“1人排队”为事件B,“2人排队”为事件C,则A,B,C彼此互斥. P(A∪B∪C)=P(A)+P(B)+P(C)=0.10+0.16+0.30=0.56. (2)记“至少2人排队”为事件D,“少于2人排队”为事件A∪B,那么事件D与事件A∪B是对立事件,则P(D)=P()=1-[P(A)+P(B)]=1-(0.10+0.16)=0.74. 点评 应用概率加法公式求概率的前提有两个:一是所求事件是几个事件的和,二是这几个事件彼此互斥.在应用概率加法公式前,一定要弄清各事件之间的关系,把一个事件分拆为几个彼此互斥的事件的和,再应用公式求解所求概率. 二、求解“至少”与“至多”型问题 例2甲、乙、丙、丁四人同时参加一等级考试,已知恰有1人过关(事件A)的概率为0.198,恰有2人过关(事件B)的概率为0.38,恰有3人过关(事件C)的概率为0.302,4人都过关(事件D)的概率为0.084.求: (1)至少有2人过关的概率P1; (2)至多有3人过关的概率P2. 分析 “至少有2人过关”即事件B∪C∪D.“至多有3人过关”即事件A,B,C与事件“4人均未过关”的并事件,其对立事件为D.(注意“4人均未过关”这种可能情况) 解 由条件知,事件A,B,C,D彼此互斥. (1)P1=P(B∪C∪D)=P(B)+P(C)+P(D)=0.766. (2)P2=P()=1-P(D)=1-0.084=0.916. 点评 处理“至多”“至少”型问题,既可以分情况讨论,也可以从反面考虑,即借助对立事件的概率间接求解.当事件包含的情况较多时,常利用P(A)=1-P()求P(A). 三、列方程求解概率问题 例3某班级同学的血型分别为A型、B型、AB型、O型,从中任取一名同学,其血型为AB型的概率为0.09,为A型或O型的概率为0.61,为B型或O型的概率为0.6,试求任取一人,血型为A型、B型、O型的概率各是多少? 分析 设出所求事件的概率,将题中涉及到的事件用所求事件表示出来,借助这些事件的概率及公式,列方程求解即可. 解 记“任取一人,血型为A型”,“任取一人,血型为B型”,“任取一人,血型为AB型”,“任取一人,血型为O型”分别为事件E,F,G,H,显然事件E,F,G,H两两互斥. 故 解得 所以任取一人,血型为A型、B型、O型的概率分别为0.31、0.3、0.3. 点评 本题很好地应用了全体事件的和为必然事件这一点.挖掘题目中的隐含条件并合理利用是解决某些问题的关键,同学们应注重这种能力的培养. 3 随机事件的概率 结论1 概率大的随机事件不一定意味着肯定发生.在一次试验中,概率大的随机事件的发生不一定优于概率小的随机事件的发生. 释义 对于概率的大小问题,只能说明相对于同一随机事件而言,概率大的发生的可能性大,概率小的发生的可能性小. 例1 在一次试验中,随机事件A发生的概率是0.3,随机事件B发生的概率是0.7,你认为如果做一次试验,可能出现B不发生A发生的现象吗?为什么? 解 这是可能的.因为随机事件B的发生概率大于随机事件A的发生概率,但并不意味着在一次试验中随机事件B的发生一定优于随机事件A的发生,随机事件的发生是不确定的. 结语 结论1实现实际生活中小概率事件发生的可能性.对于概率问题,必须注意的是概率是相对于大量重复试验的前提下得到的理论值,但在少数的有限试验中,概率不一样的随机事件发生的可能性无法确定. 结论2 概率是由巨大数据统计后得出的结论,是一种大的整体的趋势;而频率是数据统计的结果,是一种具体的趋势和规律.概率可以看作频率在理论上的期望值. 释义 概率与频率的关系是整体与具体、理论与实践、战略与战术的关系,频率随着随机事件次数的增加会趋向于概率.在处理具体的随机事件时,用概率作指导,以频率为依据. 例2 在某次射击比赛中,甲运动员在决赛中以0.2环的微弱优势战胜了乙运动员,摘得该项的金牌.下表是两人在参赛前训练中击中10环以上的次数统计: 甲运动员: 射击次数n 10 20 50 100 200 500 击中10环以上的次数m 9 17 44 92 179 450 击中10环以上的频率 乙运动员: 射击次数n 10 20 50 100 200 500 击中10环以上的次数m 8 19 44 93 177 453 击中10环以上的频率 请根据以上表格中的数据回答以下问题: (1)分别计算出两位运动员击中10环以上的频率; (2)根据(1)中计算的结果预测两位运动员在该比赛中每次击中10环以上的概率. 解 (1)两运动员击中10环以上的频率分别为: 甲:0.9,0.85,0.88,0.92,0.895,0.9; 乙:0.8,0.95,0.88,0.93,0.885,0.906; (2)由(1)中的数据可知两位运动员击中10环以上的频率都集中在0.9这个数的附近,所以可以预测两位运动员在该比赛中每次击中10环以上的概率为0.9,即两人的实力相当. 结语 结论2实现频率与概率既有联系又有区别,频率随着随机事件的试验次数的不断增加而趋向于概率. 结论3 两事件对立,必定互斥,但互斥未必对立. 释义 对立事件是互斥事件的一个特例,两个互斥事件不一定是对立事件,而两个对立事件必为互斥事件. 例3 一个不透明的袋中装入4个白球与4个黑球,从中任意摸出3个球. (1)可能发生哪些事件? (2)指出其中每个事件的互斥事件; (3)事件“至少摸出1个白球”是哪几个事件的和事件?它的对立事件是哪个事件? 解 (1)以白球或黑球的个数作为讨论标准,可能发生下列事件: ①摸出3个白球,记为事件A; ②摸出2个白球,1个黑球,记为事件B; ③摸出1个白球,2个黑球,记为事件C; ④摸出3个黑球,记为事件D; (2)事件A,B,C,D彼此互斥; (3)“至少摸出1个白球”的事件为A,B,C的和事件,即“至少摸出1个白球”的对立事件是D. 结语 结论3实现对立事件与互斥事件的联系与区别.特别在解答一些问题时,在把复杂事件加以分解的事件个数不是太多的情况下,可以把所有的事件罗列下来,结合互斥事件与对立事件的概念加以辨析. 4 点击互斥事件 一、互斥事件、对立事件的概念 1.“互斥事件”和“对立事件”都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,也就是说互斥事件至多有一个发生,也有可能两个都不发生,而对立事件是其中必有一个发生的互斥事件.因此,对立事件必须是互斥事件,但互斥事件不一定是对立事件,也就是说对立事件是互斥事件的充分不必要条件. 2.从集合的角度理解:两个互斥事件对应的基本事件所组成的集合的交集为空集,并集可能是全集,也可能不是全集;当A,B是对立事件时,其交集为空集,并集是全集. 3.互斥事件之间的关系中的“不能同时发生”体现了分类讨论的原则“不重复”,而“不遗漏”则表现在所有互斥事件的和是整个事件(必然事件). 二、例题点击 1.互斥事件、对立事件的判断 例1 从装有2个红球和2个黑球的口袋中任取2个球,那么互斥但不对立的事件是(  ) A.至少有1个红球与都是红球 B.至少有1个黑球与至少有1个红球 C.恰有1个黑球与恰有2个红球 D.至少有1个黑球与都是红球 解析 “从装有2个红球和2个黑球的口袋中任取2个球”这一事件共包含3个基本事件:(红,红),(黑,黑),(红,黑),故恰有1个黑球与恰有2个红球互斥但不对立,所以选C. 答案 C 评注 借助于列举基本事件,结合定义,易判断出互斥与对立事件. 2.互斥事件的计算 例2 袋中有红、黄、白3种颜色的球各1只,从中任取1只,有放回地抽取3次,求3只颜色不全相同的概率. 解 记“3只颜色全相同”为事件A,则所求事件为A的对立事件. 因为“3只颜色全相同”又可分为“3只全是红球(事件B)”“3只全是黄球(事件C)”“3只全是白球(事件D)”,且它们彼此互斥,故3只颜色全相同即为事件B+C+D, 由于红球、黄球、白球的个数一样, 故有P(B)=P(C)=P(D)=, 所以P(A)=P(B+C+D)=P(B)+P(C)+P(D)=, 因此有P()=1-=. 答 3只颜色不全相同的概率是. 评注 本题可将所求事件转化为彼此互斥的事件的和,但比较麻烦,故转化为其对立事件求解,体现了“正难则反”的思想.注意“3只颜色全相同”可分为三个彼此互斥的基本事件,它的对立事件为“3只颜色不全相同”. 5 解古典概型的几个注意 解古典概型问题时,要牢牢抓住它的两个特点:(1)有限性:做一次试验,可能出现的结果为有限个,即只有有限个不同的基本事件.(2)等可能性:每个基本事件发生的可能性是相等的.其计算公式P(A)=也比较简单,但是这类问题的解法多样,技巧性强,下面说一下在解题中需要注意的几个问题. 注意1——有限性和等可能性 例1 掷两枚均匀的硬币,求出现一正一反的概率. 分析 这个试验的基本事件(所有可能结果)共有4种:(正,正),(正,反),(反,正),(反,反),事件A“出现一正一反”的所有可能结果为:(正,反),(反,正). 解 P(A)==. 评注 均匀硬币在抛掷过程中出现正、反面的概率是相等的,并且试验结果是有限个. 注意2——计算基本事件的数目时,必须做到不重不漏 例2 从1,2,3,4,5这5个数字中任取三个不同的数字,求下列事件的概率:(1)A={三个数字中不含1和5};(2)B={三个数字中含1或5}. 分析 这个试验的所有可能结果为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种. 解 (1)事件A为(2,3,4),故P(A)=. (2)事件B的所有可能结果为:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5),共9种.故P(B)=. 评注 在计算事件数目时,要做到不重不漏,如B中可分为含1的:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5).含5的:(1,2,5),(1,3,5),(2,3,5),(3,4,5),(1,4,5),(2,4,5).在归于集合B中时,(1,2,5),(1,3,5),(1,4,5)