标签: 2020   高考   数学   刷题首秧   第八   概率   统计   考点   测试   53   几何   概型文含   解析  
文档信息
上传用户 Refuse     
文档格式 doc
文档价格 1.8 元
文档大小 129K
文档页数 12 页
相关文档推荐
doc 2020版高中数学 第二章 圆锥曲线与方程 阶段训练三(含解析)北师大版选修1 -1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程章末复习学案(含解析)新人教B版选修1 -1.docx
doc 2020版高中数学 第二章 数列 2.1.2 数列的递推公式(选学)学案(含解析)新人教B版必修5.docx
doc 2019-2020学年高二政治下学期期末考试试题 (VII).doc
doc 2019-2020学年高二政治下学期期末考试试题A.doc
doc 2020高考数学刷题首选卷 专题突破练(1)函数的综合问题(理)(含解析).docx
doc 2020高考数学刷题首选卷 单元质量测试(五)不等式、推理与证明、算法初步与复数 理(含解析).docx
doc 2020版高中数学 第二章 数列 2.2.2 等差数列的前n项和(第1课时)等差数列的前n项和公式学案(含解析)新人教B版必修5.docx
doc 2020版高中数学 第二章 数列 2.3.1 等比数列(第2课时)等比数列的性质学案(含解析)新人教B版必修5.docx
doc 2019-2020学年高二政治下学期期末考试试题(含解析) (III).doc
doc 2020高考数学刷题首选卷 第二章 函数、导数及其应用 考点测试12 函数与方程 文(含解析).docx
doc 2020高考数学刷题首选卷 第五章 不等式、推理与证明、算法初步与复数 考点测试34 一元二次不等式及其解法 理(含解析).docx
doc 2020版高中数学 第二章 数列 专题突破三 数列通项公式的求法学案(含解析)新人教B版必修5.docx
doc 2020版高中数学 第二章 数列 阶段训练三(含解析)新人教B版必修5.docx
doc 2020版高中数学 第二章 统计 2.1.1 简单随机抽样学案(含解析)新人教B版必修3.docx
doc 2019-2020学年高二政治下学期期末考试试题(含解析) (VI).doc
doc 2019-2020学年高二政治下学期期末联考试题 (I).doc
doc 2020高考数学刷题首选卷 第六章 立体几何 考点测试43 直线、平面平行的判定及其性质 文(含解析).docx
doc 2020高考数学刷题首选卷 考点测试14 变化率与导数 理(含解析).docx
doc 2020版高中数学 第二章 统计 2.3 变量的相关性学案(含解析)新人教B版必修3.docx
doc 2019-2020学年高二政治下学期期末联考试题 (III).doc
doc 2020版高中数学 第四章 导数应用 1.1 导数与函数的单调性学案(含解析)北师大版选修1 -1.docx
doc 2019-2020学年高二政治下学期期末质量检测试题.doc
doc 2020高考数学刷题首选卷 考点测试61 几何概型(理)(含解析).docx
doc 2020高考数学刷题首选卷 考点测试68 坐标系与参数方程(理)(含解析).docx
doc 2020高考数学大一轮复习 第九章 统计、统计案例 第一节 随机抽样检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第二章 函数、导数及其应用 课下层级训练11 函数与方程(含解析)文 新人教A版.doc
doc 2020版高中数学 第四章 导数应用 2.2 最大值、最小值问题(第1课时)函数的最值与导数学案(含解析)北师大版选修1 -1.docx
doc 2019-2020学年高二政治下学期第一次双周考试题.doc
doc 2020版高中数学 第四章 导数应用 阶段训练五(含解析)北师大版选修1 -1.docx
doc 2019-2020学年高二政治下学期第一次月半考试试题.doc
doc 2020版高中数学 阶段训练一(含解析)新人教B版选修2-1.docx
doc 2019-2020学年高二政治下学期第一次月考试题 (III).doc
doc 2020高考数学大一轮复习 第五章 数列 第三节 等比数列及其前n项和检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第八章 解析几何 第四节 椭圆检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第十一章 坐标系与参数方程 第一节 坐标系检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第十二章 不等式选讲 第二节 不等式证明检测 理 新人教A版.doc
doc 2020版高中数学 阶段训练二(含解析)新人教B版选修1 -1.docx
doc 2019-2020学年高二政治下学期第一次月考试题 (VII).doc
doc 2020版高中数学 阶段训练六(含解析)新人教B版选修1 -1.docx
doc 2020版高中数学 阶段训练四(含解析)新人教B版选修1 -1.docx
doc 2019-2020学年高二政治下学期第一次质量检测试题.doc
doc 2020高考数学大一轮复习 第十章 计数原理、概率、随机变量及其分布 第一节 计数原理与排列组合检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第十章 计数原理、概率、随机变量及其分布 第二节 二项式定理检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第十章 计数原理、概率、随机变量及其分布 第六节 独立重复试验与二项分布检测 理 新人教A版.doc
doc 2019-2020学年高二政治下学期第一次阶段性考试试题.doc
doc 2020版高中语文 专题三 第7课 高祖本纪学案(含解析)苏教版选修《史记》选读.docx
doc 2019-2020学年高二政治下学期第七次周测试题.doc
doc 2019-2020学年高二政治下学期第三次周考试题.doc
doc 2020高考数学大一轮复习 第四章 平面向量、复数、算法 第三节 复数、算法初步检测 理 新人教A版.doc
doc 2020高考物理一轮复习 第三章 第3讲 牛顿运动定律综合应用学案(含解析).doc
doc 2020版高中语文 专题二 第4课 鲁周公世家学案(含解析)苏教版选修《史记》选读.docx
doc 2020版高中语文 专题五 第12课 项羽本纪学案(含解析)苏教版选修《史记》选读.docx
doc 2019-2020学年高二政治下学期第三次月考试题 (II).doc
doc 2019-2020学年高二政治下学期第三次月考试题.doc
doc 2020高考数学刷题首秧第七章平面解析几何考点测试50两条直线的位置关系与距离公式理含解析.docx
doc 2020高考数学刷题首秧单元质量测试一集合与常用逻辑用语理含解析.docx
doc 2019-2020学年高二政治下学期期末考试试题 (V).doc
doc 2019-2020学年高二政治下学期期末考试试题 (I).doc
doc 2019-2020学年高二政治下学期期末模拟试题 (I).doc
doc 2020版高中数学 第二章 圆锥曲线与方程 专题突破四 圆锥曲线的定点、定值与最值问题学案(含解析)北师大版选修1 -1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 专题突破三 离心率的求法学案(含解析)北师大版选修1 -1.docx
doc 2020高考数学刷题首秧单元测试七平面解析几何文含解析.doc
doc 2020高考政治精刷单元测试卷(一)生活与消费.docx
doc 2019-2020学年高二政治下学期期初考试试题.doc
doc 2019-2020学年高二政治下学期期初学业水平测试模拟试题.doc
doc 2020版高中数学 第二章 圆锥曲线与方程 3.1 双曲线及其标准方程学案(含解析)北师大版选修1 -1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.4.1 抛物线的标准方程学案(含解析)新人教B版选修2-1.docx
doc 2020高考政治大一轮复习 第四单元 发展社会主义市场经济 第9课 走进社会主义市场经济课时跟踪练.doc
doc 2020高考政治大一轮复习 第十四单元 思想方法与创新意识单元检测.doc
doc 2020高考政治大一轮复习 第十四单元 思想方法与创新意识 第36课 唯物辩证法的发展观时跟踪练.doc
doc 2019-2020学年高二政治下学期期中试题(无答案) (II).doc
doc 2019-2020学年高二政治下学期期中试题(含解析) (IV).doc
doc 2020版高中数学 第二章 圆锥曲线与方程 2.3.2 双曲线的几何性质学案(含解析)新人教B版选修2-1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.2.2 椭圆的几何性质(第4课时)直线与椭圆的位置关系(三)学案(含解析)新人教B版选修2-1.docx
doc 2020高考政治大一轮复习 第十单元 文化传承与创新 第25课 文化创新课时跟踪练.doc
doc 2020高考政治大一轮复习 第十单元 文化传承与创新 第23课 文化的多样性与文化传播课时跟踪练.doc
doc 2019-2020学年高二政治下学期期中试题理.doc
doc 2020高考政治大一轮复习 第十二单元 发展中国特色社会主义文化单元检测.doc
doc 2019-2020学年高二政治下学期期中试题文 (IV).doc
doc 2019-2020学年高二政治下学期期中试题文 (I).doc
doc 2020版高中数学 第二章 圆锥曲线与方程 2.2.2 椭圆的几何性质(第1课时)椭圆的几何性质学案(含解析)新人教B版选修2-1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.2.1 双曲线及其标准方程学案(含解析)新人教B版选修1 -1.docx
doc 2020高考政治大一轮复习 第十二单元 发展中国特色社会主义文化 第28课 走进文化生活课时跟踪练.doc
doc 2020高考政治大一轮复习 第十三单元 探索世界与追求真理 第33课 把握思维的奥妙课时跟踪练.doc
doc 2019-2020学年高二政治下学期期中试题.doc
doc 2019-2020学年高二政治下学期期中试题 理 (IV).doc
doc 2020高考政治大一轮复习 第十一单元 中华文化与民族创新单元检测.doc
doc 2020高考政治大一轮复习 第六单元 为人民服务的政府单元检测.doc
doc 2020版高中数学 第二章 圆锥曲线与方程 2.1.2 由曲线求它的方程、由方程研究曲线的性质学案(含解析)新人教B版选修2-1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程学案(含解析)新人教B版选修1 -1.docx
doc 2019-2020学年高二政治下学期期中试题 文.doc
doc 2020高考政治大一轮复习 第八单元 当代国际社会单元检测.doc
doc 2019-2020学年高二政治下学期期中试题 文 (II).doc
doc 2020高考政治大一轮复习 第五单元 公民的政治生活单元检测.doc
doc 2019-2020学年高二政治下学期期中试题 (VII).doc
doc 2020版高中数学 第二章 圆锥曲线与方程 1.2 椭圆的简单性质(第2课时)椭圆简单性质的应用学案(含解析)北师大版选修1 -1.docx
doc 2020高考政治大一轮复习 第二单元 生产、劳动与经营单元检测.doc
doc 2020版高中数学 第三章 空间向量与立体几何 专题突破三 空间直角坐标系的构建策略学案(含解析)新人教B版选修2-1.docx
doc 2019-2020学年高二政治下学期期中试题 (IV).doc
doc 2019-2020学年高二政治下学期期中试题 (I).doc
doc 2020高考政治大一轮复习 第二单元 生产、劳动与经营 第4课 生产与经济制度课时跟踪练.doc
doc 2020版高中数学 第三章 空间向量与立体几何 3.2.1 直线的方向向量与直线的向量方程学案(含解析)新人教B版选修2-1.docx
doc 2020高考政治大一轮复习 第九单元 文化与生活 第21课 文化与社会课时跟踪练.doc
doc 2020高考政治大一轮复习 第三单元 收入与分配 第7课 个人收入的分配课时跟踪练.doc
doc 2019-2020学年高二政治下学期期中联合考试试题.doc
doc 2019-2020学年高二政治下学期月考试题.doc
doc 2020版高中数学 第三章 空间向量与立体几何 3.1.2 空间向量的基本定理学案(含解析)新人教B版选修2-1.docx
doc 2020版高中数学 第三章 概率学案(含解析)新人教B版必修3.docx
doc 2020高考政治大一轮复习 第一单元 生活与消费 第3课 多彩的消费课时跟踪练.doc
文档内容摘要
doc 考点测试53 几何概型 高考概览 考纲研读 1.了解随机数的意义,能运用模拟方法估计概率 2.了解几何概型的意义 一、基础小题 1.在区间(0,4)上任取一数x,则<2x-1<1的概率是(  ) A. B. C. D. 答案 C 解析 由题设可得-2<x-1<0,即-1<x<1,所以d=1,D=4,则由几何概型的概率公式可知所求概率P=.故选C. 2.取一个正方形及其外接圆,随机向圆内抛一粒豆子,则豆子落入正方形外的概率为(  ) A. B. C. D. 答案 B 解析 设圆的半径为r,所以正方形的边长为r,正方形的面积为2r2,圆的面积为πr2,∴所求概率P=1-=. 3.要产生[-3,3]上的均匀随机数y,现有[0,1]上的均匀随机数x,则进行平移与伸缩变换为(  ) A.-3x B.3x C.6x-3 D.-6x-3 答案 C 解析 利用伸缩和平移变换进行判断得-3≤6x-3≤3,故y取6x-3. 4.在圆心角∠AOB为90°的扇形中,以圆心O为起点作射线OC,则使得∠AOC和∠BOC都不小于30°的概率为(  ) A. B. C. D. 答案 A 解析 记M=“射线OC使得∠AOC和∠BOC都不小于30°”.如图所示,作射线OD,OE使∠AOD=30°,∠AOE=60°.当OC在∠DOE内时,使得∠AOC和∠BOC都不小于30°,此时的测度为度数30,所有基本事件的测度为直角的度数90.所以P(M)==. 5.一个长方体空屋子,长、宽、高分别为5 m,4 m,3 m,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是(  ) A. B. C. D. 答案 D 解析 屋子的体积为5×4×3=60 m3,捕蝇器能捕捉到的空间体积为××13×3= m3,故苍蝇被捕捉的概率是==. 6.如图所示,A是圆上一定点,在圆上其他位置任取一点A′,连接AA′,得到一条弦,则此弦的长度小于或等于半径长度的概率为(  ) A. B. C. D. 答案 C 解析  当AA′的长度等于半径长度时,∠AOA′=,A′点在A点左右都可取得,故由几何概型的概率计算公式得所求概率P==.故选C. 7.有四个游戏盘,如果撒一粒黄豆落在阴影部分,即可中奖,小明希望中奖,则他应当选择的游戏盘为(  ) 答案 A 解析 A游戏盘的中奖概率为,B游戏盘的中奖概率为,C游戏盘的中奖概率为=(其中r为圆的半径),D游戏盘的中奖概率为=(其中r为圆的半径),故A游戏盘的中奖概率最大.故选A. 8.向等腰直角三角形ABC(其中AC=BC)内任意投一点M,则AM小于AC的概率为(  ) A. B.1- C. D. 答案 D 解析 以A为圆心,AC为半径画弧与AB交于点D.依题意,满足条件的概率P===.故选D. 9.在长为12 cm的线段AB上任取一点C,现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形的面积大于20 cm2的概率为(  ) A. B. C. D. 答案 B 解析 不妨设矩形的长为x cm,则宽为(12-x) cm,由x(12-x)>20,解得2<x<10,所以该矩形的面积大于20 cm2的概率为=.故选B. 10.如图所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________. 答案 0.18 解析 由题意知,==0.18.∵S正=1,∴S阴=0.18. 11.过等腰Rt△ABC的直角顶点C在∠ACB内部随机作一条射线,设射线与AB相交于点D,则AD<AC的概率是________. 答案 0.75 解析 在AB上取一点E,使AE=AC,连接CE(如图),则当射线CD落在∠ACE内部时,AD<AC.易知∠ACE=67.5°,∴AD<AC的概率P==0.75. 12.利用随机模拟方法计算y=x2与y=4围成的面积时,利用计算器产生两组0~1之间的均匀随机数a1=RAND,b1=RAND,然后进行平移与伸缩变换a=a1·4-2,b=b1·4,试验进行100次,前98次中落在所求面积区域内的样本点数为65,已知最后两次试验的随机数a1=0.3,b1=0.8及a1=0.4,b1=0.3,那么本次模拟得出的面积约为________. 答案 10.72 解析 由a1=0.3,b1=0.8,得a=-0.8,b=3.2,(-0.8,3.2)落在y=x2与y=4围成的区域内;由a1=0.4,b1=0.3,得a=-0.4,b=1.2,(-0.4,1.2)落在y=x2与y=4围成的区域内,所以本次模拟得出的面积约为16×=10.72. 二、高考小题 13.(2018·全国卷Ⅰ)右图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则(  ) A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p3 答案 A 解析 不妨取AB=AC=2,则BC=2,所以区域Ⅰ的面积为S△ABC=2;区域Ⅲ的面积为π-2;区域Ⅱ的面积为π-(π-2)=2,所以根据几何概型的概率公式,易得p1=p2.故选A. 14.(2017·全国卷Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是(  ) A. B. C. D. 答案 B 解析 不妨设正方形ABCD的边长为2,则正方形内切圆的半径为1,S正方形=4. 由圆中的黑色部分和白色部分关于正方形的中心成中心对称,得S黑=S白=S圆=,所以由几何概型知所求概率P===.故选B. 15.(2016·全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(  ) A. B. C. D. 答案 B 解析 解法一:7:30的班车小明显然是坐不到的.当小明在7:50之后8:00之前到达,或者8:20之后8:30之前到达时,他等车的时间将不超过10分钟,故所求概率为=.故选B. 解法二:当小明到达车站的时刻超过8:00,但又不到8:20时,等车时间将超过10分钟,7:50~8:30的其他时刻到达车站时,等车时间将不超过10分钟,故等车时间不超过10分钟的概率为1-=.故选B. 16.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为(  ) A. B. C. D. 答案 C 解析 如图,数对(xi,yi)(i=1,2,…,n)表示的点落在边长为1的正方形OABC内(包括边界),两数的平方和小于1的数对表示的点落在半径为1的四分之一圆(阴影部分)内,则由几何概型的概率公式可得=⇒π=.故选C. 17.(2015·湖北高考)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,p2为事件“xy≤”的概率,则(  ) A.p1<p2< B.p2<<p1 C.<p2<p1 D.p1<<p2 答案 D 解析 如图,满足条件的x,y构成的点(x,y)在正方形OBCA内,其面积为1.事件“x+y≤”对应的图形为阴影△ODE,其面积为××=,故p1=<;事件“xy≤”对应的图形为斜线表示部分,其面积显然大于,故p2>,则p1<<p2,故选D. 18.(2017·江苏高考)记函数f(x)=的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是________. 答案  解析 由6+x-x2≥0,解得-2≤x≤3,∴D=[-2,3].如图,区间[-4,5]的长度为9,定义域D的长度为5,∴P=. 三、模拟小题 19.(2018·唐山模拟)右图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为(  ) A.8 B.9 C.10 D.12 答案 B 解析 根据面积之比与点数之比相等的关系,得黑色部分的面积S=4×4×=9.故选B. 20.(2018·郑州质检三)七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为(  ) A. B. C. D. 答案 C 解析 设正方形的边长为2,则由几何概型的概率公式,知所求概率为=.故选C. 21.(2018·合肥质检三)如图所示的图形是一个正六边形及其内切圆,现采取随机模拟的方法估计圆周率的值:随机撒一把豆子,若落在正六边形内的豆子个数为N,落在圆内的豆子个数为M,则估计圆周率π的值为(  ) A. B. C. D. 答案 D 解析 设圆的半径为r,则根据几何概型的概率公式,可得=,故π=,选D. 22.(2018·福建质检)如图,已知曲线y=sin+3把边长为4的正方形OABC分成黑色部分和白色部分.若在正方形内随机取一点,则此点取自黑色部分的概率是(  ) A. B. C. D. 答案 A 解析  如图,点D,E在直线y=3上,F为y=3与曲线y=sin+3(0<x<4)的交点.将y=3代入y=sin+3得sin=0.又因为0<x<4,所以x=2.由正弦函数的性质可知y=sin+3的图象关于点F(2,3)对称,所以阴影部分的面积S=S四边形BCDE=4×(4-3)=4.又因为S正方形OABC=4×4=16,所以此点取自黑色部分的概率是=.故选A. 23.(2018·长春质检二)若向区域Ω={(x,y)|0≤x≤1,0≤y≤1}内投点,则该点到原点的距离小于1的概率为________. 答案  解析 如图,由题意知区域Ω的面积为1,在区域Ω内,到原点的距离小于1的区域为阴影部分,即四分之一个圆,其面积为,所以所求概率为. 24.(2018·合肥质检二)小李从网上购买了一件商品,快递员计划在下午5:00~6:00之间送货上门.已知小李下班到家的时间为下午5:30~6:00.快递员到小李家时,若小李未到家,就将商品存放快递柜中,则小李需要去快递柜收取商品的概率等于________. 答案  解析 设快递员到小李家的时间为5点x分,小李到家的时间为5点y分,则依题意,若需要去快递柜收取商品,需满足 则可行域所表示的区域为图中阴影部分.由于随机试验落在矩形方框内的任何位置的等可能性,进而依据几何概型的概率公式,可得小李需要去快递柜收取商品的概率为=. 一、高考大题 本考点在近三年高考中未涉及此题型. 二、模拟大题 1.(2018·湖北黄冈、黄石等八市联考)若张三每天的工作时间在6小时至9小时之间随机均匀分布,求张三连续两天平均工作时间不少于7小时的概率. 解 设第一天工作的时间为x小时,第二天工作的时间为y小时,则因为连续两天平均工作时间不少于7小时,所以≥7,即x+y≥14,表示的区域面积为9,其中满足x+y≥14的区域面积为9-×2×2=7,∴张三连续两天平均工作时间不少于7小时的概率是. 2.(2018·安徽皖南地区调研)某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,依此类推,统计结果如下表: 停靠时间 2.5 3 3.5 4 4.5 5 5.5 6 轮船数量 12 12 17 20 15 13 8 3 (1)设该月100艘轮船在该泊位的平均停靠时间为a小时,求a的值; (2)假定某天只有甲、乙两艘轮船需要在该泊位停靠a小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率. 解 (1)a=×(2.5×12+3×12+3.5×17+4×20+4.5×15+5×13+5.5×8+6×3)=4. (2)设甲船到达的时间为x,乙船到达的时间为y,则 若这两艘轮船在停靠该泊位时至少有一艘船需要等待,则|y-x|<4,符合题意的区域为阴影部分(不包括x,y轴), 所以所求概率P==, 则这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率为. 3.(2018·山东临沂一模)设f(x)和g(x)都是定义在同一区间上的两个函数,若对任意x∈[1,2],都有|f(x)+g(x)|≤8,则称f(x)和g(x)是“友好函数”,设f(x)=ax,g(x)=. (1)若a∈{1,4},b∈{-1,1,4},求f(x)和g(x)是“友好函数”的概率; (2)若a∈[1,4],b∈[1,4],求f(x)和g(x)是“友好函数”的概率. 解 (1)设事件A表示f(x)和g(x)是“友好函数”, 则|f(x)+g(x)|(x∈[1,2])所有的情况有: x-,x+,x+,4x-,4x+,4x+, 共6种且每种情况被取到的可能性相同. 又当a>0,b>0时, ax+在上递减,在上递增; x-和4x-在(0,+∞)上递增, ∴对x∈[1,2]可使|f(x)+g(x)|≤8恒成立的有x-,x+,x+,4x-, 故事件A包含的基本事件有4种, ∴P(A)==,故所求概率是. (2)设事件B表示f(x)和g(x)是“友好函数”, ∵a是从区间[1,4]中任取的数,b是从区间[1,4]中任取的数, ∴点(a,b)所在

2020高考数学刷题首秧第八章概率与统计考点测试53几何概型文含解析.docx

 版权申诉 
























 版权投诉/申诉   非法内容举报    本页面最多提供前20页预览,超过部分请购买并下载后观看使用