标签: 2020版高中数学第二章圆锥曲线与方程章末复习学案(含解析)新人教B版选修1-1  
文档信息
上传用户 小北哇     
文档格式 doc
文档价格 1.8 元
文档大小 228K
文档页数 14 页
相关文档推荐
doc 2020版高中数学 第二章 数列 2.1.2 数列的递推公式(选学)学案(含解析)新人教B版必修5.docx
doc 2019-2020学年高二政治下学期期末考试试题 (VII).doc
doc 2019-2020学年高二政治下学期期末考试试题A.doc
doc 2020高考数学刷题首选卷 专题突破练(1)函数的综合问题(理)(含解析).docx
doc 2020高考数学刷题首选卷 单元质量测试(五)不等式、推理与证明、算法初步与复数 理(含解析).docx
doc 2020版高中数学 第二章 数列 2.2.2 等差数列的前n项和(第1课时)等差数列的前n项和公式学案(含解析)新人教B版必修5.docx
doc 2020版高中数学 第二章 数列 2.3.1 等比数列(第2课时)等比数列的性质学案(含解析)新人教B版必修5.docx
doc 2019-2020学年高二政治下学期期末考试试题(含解析) (III).doc
doc 2020高考数学刷题首选卷 第二章 函数、导数及其应用 考点测试12 函数与方程 文(含解析).docx
doc 2020高考数学刷题首选卷 第五章 不等式、推理与证明、算法初步与复数 考点测试34 一元二次不等式及其解法 理(含解析).docx
doc 2020版高中数学 第二章 数列 专题突破三 数列通项公式的求法学案(含解析)新人教B版必修5.docx
doc 2020版高中数学 第二章 数列 阶段训练三(含解析)新人教B版必修5.docx
doc 2020版高中数学 第二章 统计 2.1.1 简单随机抽样学案(含解析)新人教B版必修3.docx
doc 2019-2020学年高二政治下学期期末考试试题(含解析) (VI).doc
doc 2019-2020学年高二政治下学期期末联考试题 (I).doc
doc 2020高考数学刷题首选卷 第六章 立体几何 考点测试43 直线、平面平行的判定及其性质 文(含解析).docx
doc 2020高考数学刷题首选卷 考点测试14 变化率与导数 理(含解析).docx
doc 2020版高中数学 第二章 统计 2.3 变量的相关性学案(含解析)新人教B版必修3.docx
doc 2019-2020学年高二政治下学期期末联考试题 (III).doc
doc 2020版高中数学 第四章 导数应用 1.1 导数与函数的单调性学案(含解析)北师大版选修1 -1.docx
doc 2019-2020学年高二政治下学期期末质量检测试题.doc
doc 2020高考数学刷题首选卷 考点测试61 几何概型(理)(含解析).docx
doc 2020高考数学刷题首选卷 考点测试68 坐标系与参数方程(理)(含解析).docx
doc 2020高考数学大一轮复习 第九章 统计、统计案例 第一节 随机抽样检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第二章 函数、导数及其应用 课下层级训练11 函数与方程(含解析)文 新人教A版.doc
doc 2020版高中数学 第四章 导数应用 2.2 最大值、最小值问题(第1课时)函数的最值与导数学案(含解析)北师大版选修1 -1.docx
doc 2019-2020学年高二政治下学期第一次双周考试题.doc
doc 2020版高中数学 第四章 导数应用 阶段训练五(含解析)北师大版选修1 -1.docx
doc 2019-2020学年高二政治下学期第一次月半考试试题.doc
doc 2020版高中数学 阶段训练一(含解析)新人教B版选修2-1.docx
doc 2019-2020学年高二政治下学期第一次月考试题 (III).doc
doc 2020高考数学大一轮复习 第五章 数列 第三节 等比数列及其前n项和检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第八章 解析几何 第四节 椭圆检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第十一章 坐标系与参数方程 第一节 坐标系检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第十二章 不等式选讲 第二节 不等式证明检测 理 新人教A版.doc
doc 2020版高中数学 阶段训练二(含解析)新人教B版选修1 -1.docx
doc 2019-2020学年高二政治下学期第一次月考试题 (VII).doc
doc 2020版高中数学 阶段训练六(含解析)新人教B版选修1 -1.docx
doc 2020版高中数学 阶段训练四(含解析)新人教B版选修1 -1.docx
doc 2019-2020学年高二政治下学期第一次质量检测试题.doc
doc 2020高考数学大一轮复习 第十章 计数原理、概率、随机变量及其分布 第一节 计数原理与排列组合检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第十章 计数原理、概率、随机变量及其分布 第二节 二项式定理检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第十章 计数原理、概率、随机变量及其分布 第六节 独立重复试验与二项分布检测 理 新人教A版.doc
doc 2019-2020学年高二政治下学期第一次阶段性考试试题.doc
doc 2020版高中语文 专题三 第7课 高祖本纪学案(含解析)苏教版选修《史记》选读.docx
doc 2019-2020学年高二政治下学期第七次周测试题.doc
doc 2019-2020学年高二政治下学期第三次周考试题.doc
doc 2020高考数学大一轮复习 第四章 平面向量、复数、算法 第三节 复数、算法初步检测 理 新人教A版.doc
doc 2020高考物理一轮复习 第三章 第3讲 牛顿运动定律综合应用学案(含解析).doc
doc 2020版高中语文 专题二 第4课 鲁周公世家学案(含解析)苏教版选修《史记》选读.docx
doc 2020版高中语文 专题五 第12课 项羽本纪学案(含解析)苏教版选修《史记》选读.docx
doc 2019-2020学年高二政治下学期第三次月考试题 (II).doc
doc 2019-2020学年高二政治下学期第三次月考试题.doc
doc 2020高考物理一轮复习 第六章 第1讲 动量 动量定理学案(含解析).doc
doc 2020高考物理一轮复习 限时规范专题练(三)带电粒子在电场中运动的综合性问题(含解析).doc
doc 2020版高中数学 第二章 圆锥曲线与方程 阶段训练三(含解析)北师大版选修1 -1.docx
doc 2020高考数学刷题首秧第八章概率与统计考点测试53几何概型文含解析.docx
doc 2020高考数学刷题首秧第七章平面解析几何考点测试50两条直线的位置关系与距离公式理含解析.docx
doc 2020高考数学刷题首秧单元质量测试一集合与常用逻辑用语理含解析.docx
doc 2019-2020学年高二政治下学期期末考试试题 (V).doc
doc 2019-2020学年高二政治下学期期末考试试题 (I).doc
doc 2019-2020学年高二政治下学期期末模拟试题 (I).doc
doc 2020版高中数学 第二章 圆锥曲线与方程 专题突破四 圆锥曲线的定点、定值与最值问题学案(含解析)北师大版选修1 -1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 专题突破三 离心率的求法学案(含解析)北师大版选修1 -1.docx
doc 2020高考数学刷题首秧单元测试七平面解析几何文含解析.doc
doc 2020高考政治精刷单元测试卷(一)生活与消费.docx
doc 2019-2020学年高二政治下学期期初考试试题.doc
doc 2019-2020学年高二政治下学期期初学业水平测试模拟试题.doc
doc 2020版高中数学 第二章 圆锥曲线与方程 3.1 双曲线及其标准方程学案(含解析)北师大版选修1 -1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.4.1 抛物线的标准方程学案(含解析)新人教B版选修2-1.docx
doc 2020高考政治大一轮复习 第四单元 发展社会主义市场经济 第9课 走进社会主义市场经济课时跟踪练.doc
doc 2020高考政治大一轮复习 第十四单元 思想方法与创新意识单元检测.doc
doc 2020高考政治大一轮复习 第十四单元 思想方法与创新意识 第36课 唯物辩证法的发展观时跟踪练.doc
doc 2019-2020学年高二政治下学期期中试题(无答案) (II).doc
doc 2019-2020学年高二政治下学期期中试题(含解析) (IV).doc
doc 2020版高中数学 第二章 圆锥曲线与方程 2.3.2 双曲线的几何性质学案(含解析)新人教B版选修2-1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.2.2 椭圆的几何性质(第4课时)直线与椭圆的位置关系(三)学案(含解析)新人教B版选修2-1.docx
doc 2020高考政治大一轮复习 第十单元 文化传承与创新 第25课 文化创新课时跟踪练.doc
doc 2020高考政治大一轮复习 第十单元 文化传承与创新 第23课 文化的多样性与文化传播课时跟踪练.doc
doc 2019-2020学年高二政治下学期期中试题理.doc
doc 2020高考政治大一轮复习 第十二单元 发展中国特色社会主义文化单元检测.doc
doc 2019-2020学年高二政治下学期期中试题文 (IV).doc
doc 2019-2020学年高二政治下学期期中试题文 (I).doc
doc 2020版高中数学 第二章 圆锥曲线与方程 2.2.2 椭圆的几何性质(第1课时)椭圆的几何性质学案(含解析)新人教B版选修2-1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.2.1 双曲线及其标准方程学案(含解析)新人教B版选修1 -1.docx
doc 2020高考政治大一轮复习 第十二单元 发展中国特色社会主义文化 第28课 走进文化生活课时跟踪练.doc
doc 2020高考政治大一轮复习 第十三单元 探索世界与追求真理 第33课 把握思维的奥妙课时跟踪练.doc
doc 2019-2020学年高二政治下学期期中试题.doc
doc 2019-2020学年高二政治下学期期中试题 理 (IV).doc
doc 2020高考政治大一轮复习 第十一单元 中华文化与民族创新单元检测.doc
doc 2020高考政治大一轮复习 第六单元 为人民服务的政府单元检测.doc
doc 2020版高中数学 第二章 圆锥曲线与方程 2.1.2 由曲线求它的方程、由方程研究曲线的性质学案(含解析)新人教B版选修2-1.docx
doc 2020版高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程学案(含解析)新人教B版选修1 -1.docx
doc 2019-2020学年高二政治下学期期中试题 文.doc
doc 2020高考政治大一轮复习 第八单元 当代国际社会单元检测.doc
doc 2019-2020学年高二政治下学期期中试题 文 (II).doc
doc 2020高考政治大一轮复习 第五单元 公民的政治生活单元检测.doc
doc 2019-2020学年高二政治下学期期中试题 (VII).doc
doc 2020版高中数学 第二章 圆锥曲线与方程 1.2 椭圆的简单性质(第2课时)椭圆简单性质的应用学案(含解析)北师大版选修1 -1.docx
doc 2020高考政治大一轮复习 第二单元 生产、劳动与经营单元检测.doc
doc 2020版高中数学 第三章 空间向量与立体几何 专题突破三 空间直角坐标系的构建策略学案(含解析)新人教B版选修2-1.docx
doc 2019-2020学年高二政治下学期期中试题 (IV).doc
doc 2019-2020学年高二政治下学期期中试题 (I).doc
doc 2020高考政治大一轮复习 第二单元 生产、劳动与经营 第4课 生产与经济制度课时跟踪练.doc
doc 2020版高中数学 第三章 空间向量与立体几何 3.2.1 直线的方向向量与直线的向量方程学案(含解析)新人教B版选修2-1.docx
doc 2020高考政治大一轮复习 第九单元 文化与生活 第21课 文化与社会课时跟踪练.doc
doc 2020高考政治大一轮复习 第三单元 收入与分配 第7课 个人收入的分配课时跟踪练.doc
doc 2019-2020学年高二政治下学期期中联合考试试题.doc
doc 2019-2020学年高二政治下学期月考试题.doc
doc 2020版高中数学 第三章 空间向量与立体几何 3.1.2 空间向量的基本定理学案(含解析)新人教B版选修2-1.docx
文档内容摘要
doc 第二章 圆锥曲线与方程章末复习 学习目标 1.梳理本章知识,构建知识网络.2.进一步巩固和理解圆锥曲线的定义.3.掌握圆锥曲线的几何性质,会利用几何性质解决相关问题.4.掌握简单的直线与圆锥曲线位置关系问题的解决方法. 1.椭圆、双曲线、抛物线的定义、标准方程、几何性质 椭圆 双曲线 抛物线 定义 平面内与两个定点F1,F2的距离之和等于定长(大于|F1F2|)的点的轨迹 平面内到两个定点F1,F2的距离之差的绝对值等于定值2a(大于0且小于|F1F2|)的点的轨迹 平面内到一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹 标准方程 +=1或+=1(a>b>0) -=1或-=1(a>0,b>0) y2=2px或y2=-2px或x2=2py或x2=-2py(p>0) 关系式 a2-b2=c2 a2+b2=c2 图形 封闭图形 无限延展,但有渐近线y=±x或y=±x 无限延展,没有渐近线 变量范围 |x|≤a,|y|≤b或|y|≤a,|x|≤b |x|≥a或|y|≥a x≥0或x≤0或y≥0或y≤0 对称性 对称中心为原点 无对称中心 两条对称轴 一条对称轴 顶点 四个 两个 一个 离心率 e=, 且0<e<1 e=,且e>1 e=1 决定形状的因素 e决定扁平程度 e决定开口大小 2p决定开口大小 2.椭圆的焦点三角形 设P为椭圆+=1(a>b>0)上任意一点(不在x轴上),F1,F2为焦点且∠F1PF2=α,则△PF1F2为焦点三角形(如图). (1)焦点三角形的面积S=b2tan. (2)焦点三角形的周长L=2a+2c. 3.双曲线及渐近线的设法技巧 (1)由双曲线标准方程求其渐近线方程时,最简单实用的办法是:把标准方程中的1换成0,即可得到两条渐近线的方程.如双曲线-=1(a>0,b>0)的渐近线方程为-=0(a>0,b>0),即y=±x;双曲线-=1(a>0,b>0)的渐近线方程为-=0(a>0,b>0),即y=±x. (2)如果双曲线的渐近线方程为±=0,它的双曲线方程可设为-=λ(λ≠0). 4.求圆锥曲线方程的一般步骤 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. (1)定形——指的是二次曲线的焦点位置与对称轴的位置. (2)定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0且m≠n). (3)定量——由题设中的条件找到“式”中待定系数的等量关系,通过解方程得到量的大小. 5.直线与圆锥曲线的位置关系 (1)直线与双曲线、直线与抛物线有一个公共点应有两种情况:一是相切;二是直线与双曲线的渐近线平行、直线与抛物线的对称轴平行. (2)直线与圆锥曲线的位置关系,涉及函数、方程、不等式、平面几何等诸多方面的知识,形成了求轨迹、最值、对称、取值范围、线段的长度等多种问题.解决此类问题应注意数形结合,以形辅数的方法;还要多结合圆锥曲线的定义,根与系数的关系以及“点差法”等. 1.设A,B为两个定点,k为非零常数,|PA|-|PB|=k,则动点P的轨迹为双曲线.( × ) 2.若直线与曲线有一个公共点,则直线与曲线相切.( × ) 3.方程2x2-5x+2=0的两根x1,x2(x1<x2)可分别作为椭圆和双曲线的离心率.( √ ) 4.已知方程mx2+ny2=1,则当m>n时,该方程表示焦点在x轴上的椭圆.( × ) 5.抛物线y=4ax2(a≠0)的焦点坐标是.( √ ) 题型一 圆锥曲线的定义及应用 例1 已知椭圆+y2=1(m>1)和双曲线-y2=1(n>0)有相同的焦点F1,F2,P是它们的一个交点,则△F1PF2的形状是(  ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.随m,n变化而变化 答案 B 解析 设P为双曲线右支上的一点. 对于椭圆+y2=1(m>1),c2=m-1, |PF1|+|PF2|=2, 对于双曲线-y2=1,c2=n+1, |PF1|-|PF2|=2, ∴|PF1|=+,|PF2|=-, |F1F2|2=(2c)2=2(m+n), 而|PF1|2+|PF2|2=2(m+n)=(2c)2=|F1F2|2, ∴△F1PF2是直角三角形,故选B. 反思感悟 涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决. 跟踪训练1 抛物线y2=2px(p>0)上有A(x1,y1),B(x2,y2),C(x3,y3)三点,F是它的焦点,若|AF|,|BF|,|CF|成等差数列,则(  ) A.x1,x2,x3成等差数列 B.y1,y2,y3成等差数列 C.x1,x3,x2成等差数列 D.y1,y3,y2成等差数列 答案 A 解析 如图,过A,B,C分别作准线的垂线,垂足分别为A′,B′,C′,由抛物线定义可知|AF|=|AA′|,|BF|=|BB′|,|CF|=|CC′|. ∵2|BF|=|AF|+|CF|, ∴2|BB′|=|AA′|+|CC′|. 又∵|AA′|=x1+,|BB′|=x2+,|CC′|=x3+, ∴2=x1++x3+,得2x2=x1+x3, 故选A. 题型二 圆锥曲线的方程及几何性质 命题角度1 求圆锥曲线的方程 例2 已知双曲线-=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p等于(  ) A.1B.C.2D.3 答案 C 解析 双曲线-=1的渐近线方程为y=±x,y2=2px的准线方程为x=-. ∵双曲线的离心率为2,∴e==2, 即=±,∴渐近线方程为y=±x, 由得y=-p,∴|AB|=p, S△OAB=××p=,解得p=2. 反思感悟 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. (1)定形——指的是二次曲线的焦点位置与对称轴的位置. (2)定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0且m≠n). (3)定量——由题设中的条件找到“式”中待定系数的等量关系. 跟踪训练2 设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点A(0,2),则C的方程为(  ) A.y2=4x或y2=8x B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x 答案 C 解析 由抛物线C的方程为y2=2px(p>0),知焦点F. 设M(x,y),由抛物线性质|MF|=x+=5, 可得x=5-. 因为圆心是MF的中点,所以根据中点坐标公式,可得圆心横坐标为=. 由已知,得圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4, 则M,代入抛物线方程得p2-10p+16=0, 所以p=2或p=8. 所以抛物线C的方程为y2=4x或y2=16x. 命题角度2 求圆锥曲线的离心率 例3 如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是________. 答案  解析 由椭圆可知|AF1|+|AF2|=4,|F1F2|=2. 因为四边形AF1BF2为矩形, 所以|AF1|2+|AF2|2=|F1F2|2=12, 所以2|AF1||AF2|=(|AF1|+|AF2|)2-(|AF1|2+|AF2|2)=16-12=4, 所以(|AF2|-|AF1|)2=|AF1|2+|AF2|2-2|AF1|·|AF2|=12-4=8, 所以|AF2|-|AF1|=2, 因此对于双曲线有a=,c=, 所以C2的离心率e==. 反思感悟 求圆锥曲线离心率的三种方法 (1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法. (2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法. (3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观. 跟踪训练3 已知抛物线y2=4x的准线与双曲线-y2=1交于A,B两点,点F为抛物线的焦点,若△FAB为直角三角形,则该双曲线的离心率是________. 答案  解析 抛物线y2=4x的准线方程为x=-1,又△FAB为直角三角形,则只有∠AFB=90°,如图,则A(-1,2)应在双曲线上,代入双曲线方程可得a2=, 于是c==. 故e==. 题型三 直线与圆锥曲线的位置关系 例4 已知椭圆+=1(a>b>0)上的点P到左、右两焦点F1,F2的距离之和为2,离心率为. (1)求椭圆的标准方程; (2)过右焦点F2的直线l交椭圆于A,B两点,若y轴上一点M满足|MA|=|MB|,求直线l的斜率k的值. 解 (1)由题意知,|PF1|+|PF2|=2a=2, 所以a=. 又因为e==, 所以c=×=1, 所以b2=a2-c2=2-1=1, 所以椭圆的标准方程为+y2=1. (2)已知F2(1,0),直线斜率显然存在, 设直线的方程为y=k(x-1), A(x1,y1),B(x2,y2), 联立直线与椭圆的方程得 化简得(1+2k2)x2-4k2x+2k2-2=0, Δ=16k4-4(1+2k2)(2k2-2)>0, 所以x1+x2=, y1+y2=k(x1+x2)-2k=. 所以AB的中点坐标为. ①当k≠0时,AB的中垂线方程为y- =-, 因为|MA|=|MB|, 所以点M在AB的中垂线上, 将点M的坐标代入直线方程得, +=, 即2k2-7k+=0, 解得k=或k=; ②当k=0时,AB的中垂线方程为x=0,满足题意. 所以斜率k的取值为0,或. 反思感悟 解决圆锥曲线中的参数范围问题与求最值问题类似,一般有两种方法: (1)函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. (2)不等式法:根据题意建立含参数的不等关系式,通过解不等式求参数范围. 跟踪训练4 如图,焦距为2的椭圆E的两个顶点分别为A,B,且与n=(,-1)共线. (1)求椭圆E的标准方程; (2)若直线y=kx+m与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围. 解 (1)因为2c=2,所以c=1. 又=(-a,b),且∥n, 所以b=a,所以2b2=b2+1, 所以b2=1,a2=2. 所以椭圆E的标准方程为+y2=1. (2)设P(x1,y1),Q(x2,y2),把直线方程y=kx+m代入椭圆方程+y2=1, 消去y,得(2k2+1)x2+4kmx+2m2-2=0, 所以x1+x2=-,x1x2=. Δ=16k2-8m2+8>0, 即m2<2k2+1.(*) 因为原点O总在以PQ为直径的圆的内部, 所以·<0, 即x1x2+y1y2<0. 又y1y2=(kx1+m)(kx2+m) =k2x1x2+mk(x1+x2)+m2=. 由+<0, 得m2<k2+. 依题意且满足(*)得,m2<, 故实数m的取值范围是. 题型四 圆锥曲线中参数范围和最值问题 例5 (1)已知P为抛物线y=x2上的动点,点P在x轴上的射影为M,点A的坐标是(2,0),则|PA|+|PM|的最小值是________. 答案 -1 (2)若抛物线x2=2y上距离点A(0,a)的最近点恰好是抛物线的顶点,则a的取值范围是(  ) A.a>0 B.0<a≤1 C.a≤1 D.a≤0 答案 C 反思感悟 圆锥曲线中最值与范围的求法有两种: (1)几何法:若题目的条件和结论能明显体现几何图形特征及意义,则考虑利用图形性质来解决,这就是几何法. (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值与范围,求函数最值的常用方法有配方法、判别式法、重要不等式法及函数的单调性法等. 跟踪训练5 (1)已知点P在直线x+y+5=0上,点Q在抛物线y2=2x上,则|PQ|的最小值等于________. 答案  (2)已知向量a=(x,y),b=(1,0),且(a+b)⊥(a-b). ①求满足上述条件的点M(x,y)的轨迹C的方程; ②设曲线C与直线y=kx+m(k≠0)相交于不同的两点P,Q,点A(0,-1),当|AP|=|AQ|时,求实数m的取值范围. 解 ①∵(a+b)⊥(a-b), ∴(a+b)·(a-b)=0, ∴a2-3b2=0, ∴x2+3y2=3, 即点M(x,y)的轨迹C的方程为+y2=1. ②由 得(1+3k2)x2+6kmx+3(m2-1)=0. ∵曲线C与直线y=kx+m(k≠0)相交于不同的两点, ∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0, 即3k2-m2+1>0.① 设P(x1,y1),Q(x2,y2), 线段PQ的中点N(x0,y0), 则 ∵|AP|=|AQ|,∴PQ⊥AN. 设kAN表示直线AN的斜率, 又k≠0,∴kAN·k=-1. 即·k=-1, 得3k2=2m-1.② ∵3k2>0,∴m>. 将②代入①得2m-1-m2+1>0,即m2-2m<0, 解得0<m<2, ∴m的取值范围为. 圆锥曲线中的存在性问题 典例 已知直线l与抛物线y2=8x交于A,B两点,且线段AB恰好被点P(2,2)平分. (1)求直线l的方程; (2)抛物

2020版高中数学 第二章 圆锥曲线与方程章末复习学案(含解析)新人教B版选修1 -1.docx

 版权申诉 




























 版权投诉/申诉   非法内容举报    本页面最多提供前20页预览,超过部分请购买并下载后观看使用