标签: 全国   通用版   2019   高考   数学   二轮   复习   专题   三角函数   三角   恒等   变换   三角形   学案文  
文档信息
上传用户 crush     
文档格式 doc
文档价格 1.8 元
文档大小 262K
文档页数 17 页
相关文档推荐
doc 2020高考数学刷题首秧专题突破练1函数的综合问题理含解析.docx
doc 2020高考数学刷题首秧第七章平面解析几何考点测试45直线的方程文含解析.docx
doc 2020高考数学刷题首秧第二章函数导数及其应用考点测试9指数与指数函数文含解析.docx
doc 2019-2020学年高二英语下学期入学摸底考试试题.doc
doc 2019-2020学年高二英语下学期夏季会考一模考试试题.doc
doc 全国通用版2019高考数学二轮复习专题一三角函数三角恒等变换与解三角形规范答题示例1三角函数的图象与性质学案理.doc
doc 全国通用版2019高考数学二轮复习专题七系列4选讲第1讲坐标系与参数方程学案文.doc
doc 2020高考数学刷题首秧第六章立体几何考点测试43直线平面平行的判定及其性质文含解析.docx
doc 2020高考数学刷题首选卷 单元质量测试(一)集合与常用逻辑用语 理(含解析).docx
doc 2019-2020学年高二英语下学期学考模拟考试试题.doc
doc 2019-2020学年高二英语下学期开学考试试卷.doc
doc 全国通用版2019高考数学二轮复习专题三概率与统计第1讲计数原理学案理.doc
doc 全国通用版2019高考数学二轮复习专题二数列第1讲等差数列与等比数列学案文.doc
doc 2020高考数学刷题首选卷 第七章 平面解析几何 考点测试50 两条直线的位置关系与距离公式 理(含解析).docx
doc 2020高考数学刷题首选卷 第五章 不等式、推理与证明、算法初步与复数 考点测试38 直接证明与间接证明 理(含解析).docx
doc 2019-2020学年高二英语下学期开学考试试题 (III).doc
doc 2019-2020学年高二英语下学期摸底考试试题.doc
doc 全国通用版2019高考数学二轮复习专题二数列第2讲数列的求和问题学案文.doc
doc 2020高考数学刷题首选卷 第六章 立体几何 考点测试42 空间点、直线、平面间的位置关系 文(含解析).docx
doc 2020高考数学刷题首选卷 第四章 数列 考点测试32 数列求和 理(含解析).docx
doc 2019-2020学年高二英语下学期期中考查试题.doc
doc 全国通用版2019高考数学二轮复习专题二数列第3讲数列的综合问题学案理.doc
doc 2020高考数学刷题首选卷 考点测试6 函数的单调性 理(含解析).docx
doc 2020高考数学刷题首选卷 考点测试67 变量间的相关关系与统计案例(理)(含解析).docx
doc 2019-2020学年高二英语下学期期中联考试题.doc
doc 2019-2020学年高二英语下学期期中试题 (II).doc
doc 全国通用版2019高考数学二轮复习专题五解析几何第1讲直线与圆学案文.doc
doc 全国通用版2019高考数学二轮复习专题五解析几何第2讲圆锥曲线学案理.doc
doc 全国通用版2019高考数学二轮复习专题五解析几何规范答题示例6直线与圆锥曲线的位置关系学案文.doc
doc 2020高考数学大一轮复习 第九章 概率 课下层级训练51 随机事件的概率(含解析)文 新人教A版.doc
doc 2020高考数学大一轮复习 第九章 统计、统计案例 第二节 用样本估计总体检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第五章 数列 第一节 数列的概念与简单表示法检测 理 新人教A版.doc
doc 2019-2020学年高二英语下学期期中试题 (V).doc
doc 2019-2020学年高二英语下学期期中试题 (VIII).doc
doc 全国通用版2019高考数学二轮复习专题五解析几何规范答题示例8解析几何中的探索性问题学案理.doc
doc 全国通用版2019高考数学二轮复习专题六函数与导数第2讲函数的应用学案理.doc
doc 2020高考数学大一轮复习 第五章 数列 第四节 数列求和及综合应用检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第八章 解析几何 课下层级训练48 抛物线(含解析)文 新人教A版.doc
doc 2020高考数学大一轮复习 第十二章 不等式选讲 第一节 绝对值不等式检测 理 新人教A版.doc
doc 2019-2020学年高二英语下学期期中试题B.doc
doc 2019-2020学年高二英语下学期期中试题(无答案) (III).doc
doc 全国通用版2019高考数学二轮复习专题六函数与导数第4讲导数的热点问题学案文.doc
doc 全国通用版2019高考数学二轮复习专题六函数与导数规范答题示例8函数的单调性极值与最值问题学案文.doc
doc 全国通用版2019高考数学二轮复习专题四立体几何与空间向量规范答题示例5空间中的平行与垂直关系学案理.doc
doc 2020高考数学大一轮复习 第十章 复数、算法初步、统计与统计案例 课下层级训练57 用样本估计总体(含解析)文 新人教A版.doc
doc 2020高考数学大一轮复习 第十章 计数原理、概率、随机变量及其分布 第三节 随机事件的概率检测 理 新人教A版.doc
doc 2020高考数学大一轮复习 第十章 计数原理、概率、随机变量及其分布 第八节 两点分布、超几何分布、正态分布检测 理 新人教A版.doc
doc 2019-2020学年高二英语下学期期初考试试题 (I).doc
doc 2019-2020学年高二英语下学期期末模拟试题 (I).doc
doc 全国通用版2019高考数学二轮复习中档大题规范练一三角函数与解三角形文.doc
doc 全国通用版2019高考数学二轮复习中档大题规范练五坐标系与参数方程文.doc
doc 全国通用版2019高考数学二轮复习压轴大题突破练一直线与圆锥曲线1文.doc
doc 2020高考数学大一轮复习 第四章 平面向量、复数、算法 第一节 平面向量的线性运算与基本定理检测 理 新人教A版.doc
doc 2020高考物理一轮复习 热点专题系列(六)电磁感应中的图象问题学案(含解析).doc
doc 2019-2020学年高二英语下学期期末考试试题 (II).doc
doc 全国通用版2019高考数学二轮复习12+4分项练9直线与圆文.doc
doc 2019-2020学年高二英语下学期6月联考试题.doc
doc 2019-2020学年高二英语下学期5月月考试题(VIII).doc
doc 2020高考数学刷题首秧专题突破练7概率与其他知识的交汇理含解析.docx
doc 2020高考政治精刷单元测试卷一生活智慧与时代精神.docx
doc 全国通用版2019高考数学二轮复习12+4分项练6概率文.doc
doc 2019-2020学年高二英语下学期5月月考试题(IV).doc
doc 全国通用版2019高考数学二轮复习12+4分项练3复数与程序框图文.doc
doc 2019-2020学年高二英语下学期5月月考试题(I).doc
doc 全国通用版2019高考数学二轮复习12+4分项练13导数文.doc
doc 2020高考政治大一轮复习 第四单元 发展社会主义市场经济 第11课 经济全球化与对外开放课时跟踪练.doc
doc 2020高考政治大一轮复习 第十四单元 思想方法与创新意识 第38课 创新意识与社会进步课时跟踪练.doc
doc 2019-2020学年高二英语下学期5月月考试题(10).doc
doc 全国通用版2019高考数学二轮复习12+4分项练10直线与圆文.doc
doc 2019-2020学年高二英语下学期5月月考试题 (I).doc
doc 全国通用版2019高考地理总复习精准提分练:小题满分练十一.doc
doc 全国通用版2019高考地理总复习精准提分练:小题满分练九.doc
doc 2020高考政治大一轮复习 第十四单元 思想方法与创新意识 第35课 唯物辩证法的联系观课时跟踪练.doc
doc 2020高考政治大一轮复习 第十单元 文化传承与创新 第24课 文化的继承性与文化发展课时跟踪练.doc
doc 2020高考政治大一轮复习 第十五单元 认识社会与价值选择 第40课 实现人生的价值课时跟踪练.doc
doc 2019-2020学年高二英语下学期4月月考试题 (I).doc
doc 全国通用版2019高考地理总复习精准提分练:大题规范练十二.doc
doc 全国通用版2019高考地理总复习精准提分练:大题规范练六.doc
doc 全国通用版2019高考地理总复习精准提分练:大题规范练二.doc
doc 全国通用版2019高考地理总复习精准提分练:仿真模拟练八.doc
doc 2020高考政治大一轮复习 第十二单元 发展中国特色社会主义文化 第30课 培养担当民族复兴大任的时代新人课时跟踪练.doc
doc 2020高考政治大一轮复习 第十三单元 探索世界与追求真理单元检测.doc
doc 2019-2020学年高二英语下学期3月月考试题 (III).doc
doc 2019-2020学年高二英语下学期2月模块诊断试题.doc
doc 全国通用版2019高考化学总复习优编增分练:高考必考重要填空逐空特训题型四滴定应用填空特训.doc
doc 全国通用版2019高考化学总复习优编增分练:高考必考重要填空逐空特训题型二和电离平衡溶度积有关的填空特训.doc
doc 全国通用版2019高考化学总复习优编增分练:高考压轴大题特训题型四“性质原理型”定性定量综合实验.doc
doc 2020高考政治大一轮复习 第十三单元 探索世界与追求真理 第32课 探究世界的本质课时跟踪练.doc
doc 2020高考政治大一轮复习 第十一单元 中华文化与民族创新 第27课 我们的民族精神课时跟踪练.doc
doc 2019-2020学年高二英语上学期返校考试题.doc
doc 2020高考政治大一轮复习 第六单元 为人民服务的政府 第15课 我国政府受人民的监督课时跟踪练.doc
doc 2019-2020学年高二英语上学期第四次双周考试题.doc
doc 全国通用版2019高考化学总复习优编增分练:高考压轴大题特训题型二以“化工流程”为载体的综合考查.doc
doc 全国通用版2019高考化学总复习优编增分练:选择题热点题型特训题型四官能团性质判断型.doc
doc 2020高考政治大一轮复习 第八单元 当代国际社会 第20课 维护世界和平 促进共同发展课时跟踪练.doc
doc 2020高考政治大一轮复习 第五单元 公民的政治生活 第13课 我国公民的政治参与课时跟踪练.doc
doc 2019-2020学年高二英语上学期第十四次双周考试题.doc
doc 2019-2020学年高二英语上学期第十一次双周考试题.doc
doc 全国通用版2019高考化学总复习优编增分练:选择题热点题型特训题型十三表格实验分析型.doc
doc 全国通用版2019高考化学总复习优编增分练:选择题热点题型特训题型八框图结构分析判断型.doc
doc 全国通用版2019高考化学总复习优编增分练:选择题热点题型特训题型三有机知识辨析型.doc
doc 2020高考政治大一轮复习 第二单元 生产、劳动与经营 第6课 投资理财的选择课时跟踪练.doc
doc 2020高考政治大一轮复习 第九单元 文化与生活单元检测.doc
doc 2019-2020学年高二英语上学期第八次双周考试题.doc
doc 2020高考政治大一轮复习 第三单元 收入与分配 第8课 财政与税收课时跟踪练.doc
doc 2019-2020学年高二英语上学期第五次双周考试题.doc
doc 全国通用版2019高考化学总复习优编增分练:选择题热点题型特训题型一传统文化描述型.doc
doc 全国通用版2019版高考语文一轮复习专题十正确使用词语包括熟语真题体验亮剑高考.doc
doc 全国通用版2019版高考语文一轮复习专题十正确使用词语包括熟语专题专项突破演练35词语专项练正确判断成语运用的正误二.doc
doc 2020高考政治大一轮复习 第七单元 发展社会主义民主政治单元检测.doc
文档内容摘要
doc 第2讲 三角恒等变换与解三角形 [考情考向分析] 正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查: 1.边和角的计算.2.三角形形状的判断.3.面积的计算.4.有关参数的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视. 热点一 三角恒等变换 1.三角求值“三大类型” “给角求值”“给值求值”“给值求角”. 2.三角函数恒等变换“四大策略” (1)常值代换:特别是“1”的代换,1=sin2θ+cos2θ=tan 45°等. (2)项的拆分与角的配凑:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦. 例1 (1)(2018·张掖市诊断考试)已知sin=,则cos等于(  ) A. B. C.- D.- 答案 D 解析 cos=cos =cos, ∵sin=cos=, ∴cos=cos =2cos2-1=-1=-. (2)已知sin α=,sin(α-β)=-,α,β均为锐角,则β等于(  ) A. B. C. D. 答案 C 解析 因为α,β均为锐角, 所以-<α-β<. 又sin(α-β)=-, 所以cos(α-β)=. 又sin α=,所以cos α=, 所以sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =×-×=. 所以β=. 思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况. (2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 跟踪演练1 (1)(2018·榆林模拟)若0<α<,-<β<0,cos=,cos=,则cos等于(  ) A. B.- C. D.- 答案 A 解析 由题意得sin=, sin=, 而cos=cos =coscos+sinsin =×+×=. (2)(2018·河北省衡水中学模拟)若=-,则cos α+sin α的值为(  ) A.- B.- C. D. 答案 C 解析 ∵= =-(sin α+cos α)=-, ∴cos α+sin α=. 热点二 正弦定理、余弦定理 1.正弦定理:在△ABC中,===2R(R为△ABC的外接圆半径).变形:a=2Rsin A,b=2Rsin B,c=2Rsin C,sin A=,sin B=,sin C=,a∶b∶c=sin A∶sin B∶sin C等. 2.余弦定理:在△ABC中,a2=b2+c2-2bccos A. 变形:b2+c2-a2=2bccos A,cos A=. 例2 (2018·北京)在△ABC中,a=7,b=8,cos B=-. (1)求∠A; (2)求AC边上的高. 解 (1)在△ABC中,因为cos B=-, 所以sin B==. 由正弦定理得sin A==. 由题设知<∠B<π,所以0<∠A<, 所以∠A=. (2)在△ABC中, 因为sin C=sin(A+B)=sin Acos B+cos Asin B=, 所以AC边上的高为asin C=7×=. 思维升华 关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口. 跟踪演练2 (2018·天津市十二校模拟)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且+=. (1)求角B的大小; (2)已知=4,△ABC的面积为6,求边长b的值. 解 (1)由已知得bcos A+acos B=bsin C, 由正弦定理得sin Bcos A+cos Bsin A=sin Bsin C, ∴sin(A+B)=sin Bsin C, 又在△ABC中,sin(A+B)=sin C≠0, ∴sin B=,∵0<B<,∴B=. (2)由已知及正弦定理得c=4, 又 S△ABC=6,B=,∴acsin B=6,得a=6, 由余弦定理b2=a2+c2-2accos B, 得 b=2. 热点三 解三角形与三角函数的综合问题 解三角形与三角函数的综合是近几年高考的热点,主要考查三角形的基本量,三角形的面积或判断三角形的形状. 例3 (2018·天津)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsin A=acos. (1)求角B的大小; (2)设a=2,c=3,求b和sin(2A-B)的值. 解 (1)在△ABC中,由正弦定理=,可得 bsin A=asin B. 又由bsin A=acos,得asin B=acos, 即sin B=cos,所以tan B=. 又因为B∈(0,π),所以B=. (2)在△ABC中,由余弦定理及a=2,c=3,B=, 得b2=a2+c2-2accos B=7,故b=. 由bsin A=acos,可得sin A= . 因为a<c,所以cos A= . 因此sin 2A=2sin Acos A=, cos 2A=2cos2A-1=. 所以sin(2A-B)=sin 2Acos B-cos 2Asin B =×-×=. 思维升华 解三角形与三角函数的综合题,要优先考虑角的范围和角之间的关系;对最值或范围问题,可以转化为三角函数的值域来求解. 跟踪演练3 (2018·雅安三诊)已知函数f(x)=2cos2x+sin-1(x∈R). (1)求函数f(x)的最小正周期及单调递增区间; (2)在△ABC中,内角A,B,C的对边分别为a,b,c,已知f(A)=,若b+c=2a,且·=6,求a的值. 解 (1)f(x)=sin+2cos2x-1 =-cos 2x+sin 2x+cos 2x =cos 2x+sin 2x=sin. ∴函数f(x)的最小正周期T==π. 由2kπ-≤2x+≤2kπ+(k∈Z), 可解得kπ-≤x≤kπ+(k∈Z). ∴f(x)的单调递增区间为(k∈Z). (2)由f(A)=sin=,可得 2A+=+2kπ或2A+=+2kπ(k∈Z). ∵A∈(0,π),∴A=, ∵·=bccos A=bc=6,∴bc=12, 又∵2a=b+c, ∴cos A==-1=-1=-1, ∴a=2. 真题体验 1.(2017·山东改编)在△ABC中,角A,B,C的对边分别为a,b,c.若△ABC为锐角三角形,且满足sin B(1+2cos C)=2sin Acos C+cos Asin C,则下列等式成立的是______.(填序号) ①a=2b; ②b=2a; ③A=2B; ④B=2A. 答案 ① 解析 ∵等式右边=sin Acos C+(sin Acos C+cos Asin C)=sin Acos C+sin(A+C) =sin Acos C+sin B, 等式左边=sin B+2sin Bcos C, ∴sin B+2sin Bcos C=sin Acos C+sin B. 由cos C>0,得sin A=2sin B. 根据正弦定理,得a=2b. 2.(2017·北京)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若sin α=,cos(α-β)=________. 答案 - 解析 由题意知α+β=π+2kπ(k∈Z), ∴β=π+2kπ-α(k∈Z),又sin α=, ∴cos(α-β)=cos αcos β+sin αsin β =-cos2α+sin2α=2sin2α-1 =2×-1=-. 3.(2018·全国Ⅲ改编)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=________. 答案  解析 ∵S=absin C== =abcos C, ∴sin C=cos C,即tan C=1. 又∵C∈(0,π),∴C=. 4.(2018·全国Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知bsin C+csin B=4asin Bsin C,b2+c2-a2=8,则△ABC的面积为________. 答案  解析 ∵bsin C+csin B=4asin Bsin C, ∴由正弦定理得 sin Bsin C+sin Csin B=4sin Asin Bsin C. 又sin Bsin C>0,∴sin A=. 由余弦定理得cos A===>0, ∴cos A=,bc==, ∴S△ABC=bcsin A=××=. 押题预测 1.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cos A=,sin B=cos C,并且a=,则△ABC的面积为________. 押题依据 三角形的面积求法较多,而在解三角形中主要利用正弦、余弦定理求解,此题很好地体现了综合性考查的目的,也是高考的重点. 答案  解析 因为0<A<π,cos A=, 所以sin A==. 又由cos C=sin B=sin(A+C) =sin Acos C+cos Asin C=cos C+sin C知,cos C>0, 并结合sin2C+cos2C=1,得sin C=,cos C=. 于是sin B=cos C=. 由a=及正弦定理=,得c=. 故△ABC的面积S=acsin B=. 2.已知函数f(x)=sin ωx·cos ωx-cos2ωx(ω>0)的最小正周期为. (1)求ω的值; (2)在△ABC中,sin B,sin A,sin C成等比数列,求此时f(A)的值域. 押题依据 三角函数和解三角形的交汇命题是近几年高考命题的趋势,本题综合考查了三角变换、余弦定理和三角函数的值域,还用到数列、基本不等式等知识,对学生能力要求较高. 解 (1)f(x)=sin 2ωx-(cos 2ωx+1) =sin-, 因为函数f(x)的最小正周期为T==, 所以ω=. (2)由(1)知f(x)=sin-, 易得f(A)=sin-. 因为sin B,sin A,sin C成等比数列, 所以sin2A=sin Bsin C, 所以a2=bc, 所以cos A== ≥=(当且仅当b=c时取等号). 因为0<A<π, 所以0<A≤,所以-<3A-≤, 所以-<sin≤1, 所以-1<sin-≤, 所以f(A)的值域为. A组 专题通关 1.(2018·全国Ⅲ)若sin α=,则cos 2α等于(  ) A. B. C.- D.- 答案 B 解析 ∵sin α=,∴cos 2α=1-2sin2α=1-2×2=. 2.tan 70°+tan 50°-tan 70°tan 50°的值为(  ) A. B. C.- D.- 答案 D 解析 因为tan 120°==-, 即tan 70°+tan 50°-tan 70°tan 50°=-. 3.(2018·西南名校联盟(云南师大附中)月考)在△ABC中,若原点到直线xsin A+ysin B+sin C=0的距离为1,则此三角形为(  ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定 答案 A 解析 由已知可得,=1, ∴sin2C=sin2A+sin2B,∴c2=a2+b2, 故△ABC为直角三角形. 4.(2018·衡水金卷调研卷)在△ABC中,角A,B,C的对边分别为a,b,c,acos B+bcos A=2ccos C,c=,且△ABC的面积为,则△ABC的周长为(  ) A.1+ B.2+ C.4+ D.5+ 答案 D 解析 在△ABC中,acos B+bcos A=2ccos C, 则sin Acos B+sin Bcos A=2sin Ccos C, 即sin(A+B)=2sin Ccos C, ∵sin(A+B)=sin C≠0,∴cos C=,∴C=, 由余弦定理可得,a2+b2-c2=ab, 即(a+b)2-3ab=c2=7, 又S=absin C=ab=,∴ab=6, ∴(a+b)2=7+3ab=25,a+b=5, ∴△ABC的周长为a+b+c=5+. 5.已知α为锐角,则2tan α+的最小值为(  ) A.1 B.2 C. D. 答案 D 解析 方法一 由tan 2α有意义,α为锐角可得α≠45°, ∵α为锐角,∴tan α>0, ∴2tan α+=2tan α+ =≥×2=, 当且仅当tan α=,即tan α=,α=时等号成立.故选D. 方法二 ∵α为锐角,∴sin α>0,cos α>0, ∴2tan α+=+ == =≥×2=, 当且仅当=, 即α=时等号成立.故选D. 6.(2017·全国Ⅰ)已知α∈,tan α=2,则cos=________. 答案  解析 ∵cos=cos αcos +sin αsin =(cos α+sin α). 又由α∈,tan α=2知,sin α=,cos α=, ∴cos=×=. 7.设△ABC内切圆与外接圆的半径分别为r与R.且sin A∶sin B∶sin C=2∶3∶4,则cos C=________;当BC=1时,△ABC的面积等于________. 答案 -  解析 ∵sin A∶sin B∶sin C=2∶3∶4, ∴a∶b∶c=2∶3∶4. 令a=2t,b=3t,c=4t, 则cos C==-, ∴sin C=. 当BC=1时,AC=, ∴S△ABC=×1××=. 8.(2018·绵阳诊断)如图,在△ABC中,BC=2,∠ABC=,AC的垂直平分线DE与AB,AC分别交于

全国通用版2019高考数学二轮复习专题一三角函数三角恒等变换与解三角形第2讲三角恒等变换与解三角形学案文.doc

 版权申诉 


































 版权投诉/申诉   非法内容举报    本页面最多提供前20页预览,超过部分请购买并下载后观看使用